RNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases
نویسندگان
چکیده
For transcription through chromatin, RNA polymerase (Pol) II associates with elongation factors (EFs). Here we show that many EFs crosslink to RNA emerging from transcribing Pol II in the yeast Saccharomyces cerevisiae. Most EFs crosslink preferentially to mRNAs, rather than unstable non-coding RNAs. RNA contributes to chromatin association of many EFs, including the Pol II serine 2 kinases Ctk1 and Bur1 and the histone H3 methyltransferases Set1 and Set2. The Ctk1 kinase complex binds RNA in vitro, consistent with direct EF-RNA interaction. Set1 recruitment to genes in vivo depends on its RNA recognition motifs (RRMs). These results strongly suggest that nascent RNA contributes to EF recruitment to transcribing Pol II. We propose that EF-RNA interactions facilitate assembly of the elongation complex on transcribed genes when RNA emerges from Pol II, and that loss of EF-RNA interactions upon RNA cleavage at the polyadenylation site triggers disassembly of the elongation complex.
منابع مشابه
Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain.
The C-terminal domain (CTD) of the RNA polymerase II (Pol II) largest subunit is hyperphosphorylated during transcription. Using an in vivo cross-linking/chromatin immunoprecipitation assay, we found previously that different phosphorylated forms of RNA Pol II predominate at different stages of transcription. At promoters, the Pol II CTD is phosphorylated at Ser 5 by the basal transcription fac...
متن کاملThe yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription
Bud27, the yeast orthologue of human URI/RMP, is a member of the prefoldin-like family of ATP-independent molecular chaperones. It has recently been shown to mediate the assembly of the three RNA polymerases in an Rpb5-dependent manner. In this work, we present evidence of Bud27 modulating RNA pol II transcription elongation. We show that Bud27 associates with RNA pol II phosphorylated forms (C...
متن کاملTwo cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex.
Three cyclin-dependent kinases, CDK7, -8, and -9, are specifically involved in transcription by RNA polymerase II (Pol II) and target the Pol II C-terminal domain (CTD). The role of CDK7 and CDK8 kinase activity in transcription has been unclear, with CDK7 shown to have variable effects on transcription and CDK8 suggested to repress transcription and/or to target other gene-specific factors. Us...
متن کاملVps factors are required for efficient transcription elongation in budding yeast.
There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired trans...
متن کاملA new role for histone tail modifications in transcription elongation.
RNA polymerase II (Pol II) faces a number of daunting tasks while transcribing genes. It must respond to a large array of transcription regulators, permitting distinct regulation of thousands of genes. It must coordinate its activities with RNA processing events and regulators of chromatin modifications and structure (Sims et al. 2004; Saunders et al. 2006). The C-terminal domain (CTD), a uniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017